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We apply the principle of superposition to two quantum mechanical states of which
one has a short life time 1/�. They must be identical, but may have a small difference
in energy-momentum comparable to �. This produces new effects resulting from the
linear relationship that appears between the S-matrix element and the production cross
section of the decay products of the short lived state. An optical theorem for diffraction
dissociation processes is proposed.

This mechanism also provides a measure of the non-orthogonality between unstable
particles that are eigenstates of a non-Hermitian Hamiltonian.

KEY WORDS: quantum mechanics; superposition principle; optical theorem; unsta-
ble states; diffractive scattering.

1. INTRODUCTION

In the field of hadron-hadron interactions, there is a type of process known
as ‘quasi-diffractive’ (See, e.g., Amaldi et al., 1976; Leith, 1975) where an in-
coming particle is excited to a short-lived state (which subsequently decays).
These processes have a surprisingly high cross-section not unsimilar to diffractive
scattering proper where the incoming particles remain the same and where the
incoming and the outgoing states are in quantum mechanical interference, causing
the cross-section to be very large.

Should it not be possible to make the same principle also work for the
quasi diffractive processes? Then we would have to have quantum mechanical
interference not only between ‘identical states’ but also between ‘similar states.’
The following contribution is in the line of this idea.
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2. EXTENSION OF THE QUANTUM MECHANICAL PRINCIPLE
OF SUPERPOSITION TO NON-IDENTICAL STATES WITH
SHORT LIFE TIMES

2.1. Present Situation—Interference for Identical States

In a two-body reaction between stable states

a + b −→ c + d (1)

one distinguishes the general inelastic channel from the special elastic channel in
which c = a and d = b. In terms of a scattering amplitudef (θ ) in the center of
mass system, the differential cross section is related to the amplitude in both cases
by

dσ

d�
= |f (θ )|2. (2)

Despite the apparent similarity in the form of (2), the elastic case is quite
special because its amplitude contains the incoming beam as an additive term, on
account of the identity of the incoming and the outgoing states. This can best be
seen in a partial wave expansion of f (θ ) (See, e.g., Blatt and Weisskopf, 1965;
Roman, 1965).

f el(θ ) = 1

2ik

∑

l

(2l + 1)
(
Sel

l − 1
)
Pl(cos θ ) (3)

f inel(θ ) = 1

2ik

∑

l

(2l + 1)S inel
l Pl(cos θ ) (4)

Here the Sl are the matrix elements of the lth partial wave unitary S-matrix. Let us
consider a number of channels of reaction 1, let the elastic channel be denoted by
the ket |1〉, the first inelastic channel by |2〉, another one by |3〉, etc. Then Eqs. 3
and 4 may be written as a transition (index l suppressed):

|1〉 → |f 〉 = S11|1〉 − |1〉 + S12|2〉 + S13|3〉 + · · · (5)

The cross section is proportional to

〈f |f 〉 = |S11|1〉 − |1〉 + S12|2〉 + S13|3〉 + · · · |2

= |S11 − 1|2〈1|1〉 + |S12|2〈2|2〉 + |S13|2〈3|3〉 · · · (6)

and terms proportional to 〈1|2〉 etc., referring to different final states, are zero due
to their orthogonality, because they show no interference, they are incoherent. In
order to interfere they would have to be identical in all respects. Only the incoming
wave |1〉 and the scattered wave S11|1〉 are identical in all respects and interfere
with each other; this is expressed in the notation where the same ket is attached to
both waves.
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In particular the momenta of two states have to be equal if they are to interfere.
This is intuitively evident—consider two plane waves ψ1 and ψ2 propagating along
z. Their superposition would give a probability P along z

P (z) = |ψ1 + ψ2|2 = |eik1z + eik2z|2 (7)

The probability oscillates and the interference term averages out to zero if k1 −
k2 �= 0: for the actual detection in a macroscopic detector extending from z = −a

to z = a the measured rate can be written as

1

2a

∫ a

−a

P (z) dz = 2 + 1

2a

∫ a

−a

2Reei(k1−k2)zdz

=
{

2 if k1 �= k2 (i.e. (k1 − k2)a � 1)

4 if k1 = k2 (i.e. (k1 − k2)a � 1)
(8)

The two momenta have to be equal for interference to take place.

2.2. Proposal—Interference for Similar States if One has Short Life Time

Now we introduce short lived states. Let particle c in reaction 1 be unstable
with mean life 1/� and some decay products x, y . . . Furthermore, let b and d be
identical. As an example we consider the amplitudes for the two processes

p + p −→ p + p (9)

p + p −→ N∗ + p (10)

(subsequently N∗ −→ p + π . . .). The N∗ is to have the same quantum numbers
as the proton, except for a different mass. The difference in mass results in a
difference in momenta of p and N∗. We propose that interference takes place
between the two processes (9) and (10) and between the incoming proton beam
and the outgoing N∗ in (10). In this way we extend the principle of superposition
from cases of ‘complete identity’ to cases of ‘approximate identity’ which we
define in a first step as ‘identical in all respects except for a small difference in
energy-momentum comparable to �.’

The reason presented above for the absence of interference does not apply
because the averaging out is no longer complete if one of the two amplitudes
is quickly decaying: as the phase difference is increasing towards 180 degrees
and the interference term changes sign the amplitude has already decreased, and
the compensation will be incomplete, c.f. Fig. 1 for an illustration. With the
appearance of unstable states, the macroscopic scale a as a measure of coherence
length required for interference is replaced by a microscopic measure at the scale
of �.



Extension of the Quantum Mechanical Principle of Superposition 1859

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

Intensity 1

Intensity 2

Interference term

Sum

Intensity

Distance x/λ

Fig. 1. Interference of one stable and one decay-
ing amplitude that start out at x = 0 with equal
size and phase. With the superposition principle
applied, the intensity is |eik1x + ei(k2+iκ)x |2 = 1 +
e−2κx + 2Re ei(k1−k2)x−κx . The values chosen were
k1 − k2 = 1/λ and κ = 0.5/λ leading to a yield ra-
tio [c.f. Eq. 21] of Yl/q = 0.4.

2.2.1. Short Review of the Space-Time Description of Unstable States

As explained in another contribution to this volume (Blum and Saller, 2004)
an unstable particle with given energy-momentum p := (E, �k) and mean life time
1/� is characterized by a small four vector (the ‘spread vector’) q := (	E,

−→
	k)

which is spacelike, in contrast to the timelike p.
There are three Lorentz invariants:

p2 = E2 − (�k)2 = m2

pq = E	E − �k−→
	k = m�/2 (11)

q2 = (	E)2 − (
−→
	k)2 = −B2 ≤ 0

where m is the rest mass, and B2 (capital beta) is an invariant which contains in-
formation from the kinematic conditions of production, like masses and momenta
of the particles in the production process. |B|2 is typically of the order of �2/4 but
may also be very small or zero when the particles co-produced with the unstable
particle in question have a total invariant mass that is small compared to the total
energy of the reaction or that is zero.

There is a special Lorentz frame (the ‘sharp energy system’) for which
	E = 0, and another one (the ‘central rest system’) for which �k = 0. But there
is no Lorentz frame for which

−→
	k = 0, in other words: there is no Lorentz

frame in which the unstable particle comes entirely to rest (‘entirely’ referring



1860 Blum

to the statistical distribution of invariant mass—if the peak of the Breit-Wigner
distribution is at rest, the parts in the wings run away in opposite directions).

In the most general case there are 8 real numbers to define the energy-
momentum properties of an unstable state, and the vectors �k and

−→
	k do not have

to be parallel. But many situations are simpler. For example, an unstable particle
produced in a two-body reaction is characterized by two real numbers in addition
to its energy-momentum, if one is in the c.m. system of the reaction. And there
is a sharp energy system where only one real number characterizes the decaying
particle in addition to the 4 numbers of energy-momentum.

2.2.2. Short Review of the Quantum Mechanical Description of Unstable States

It can be shown (Blum and Saller, 2003) that in a relativistically invariant
wave function for a stable particle such as

ψ(t, �x) = ei(Et−�k�x) (12)

or

ψ(t, r) = 1

r
ei(Et−kr) (13)

the effect of instability may be introduced in a relativistically compatible form by
using the spread vector (	E,

−→
	k) described in subsection 2.2.1. One replaces in

Eqs. (12) or (13) the real by the complex four vector

E −→ E + i	E and �k −→ �k + i
−→
	k (14)

and obtains for t > 0 in first order of �/m the wave functions

ψ(t, �x) = ei(E+i	E)t−i(�k+i
−→
	k)�x (15)

or

ψ(t, r) = 1

r
ei(E+i	E)t−i(k+i	k)r (16)

Equation (16) describes a spherical wave where the momentum spread is parallel
to the momentum. In the ‘sharp energy’ Lorentz frame, 	E = 0, and Eq. (16)
takes the form

ψ(t, r) = 1

r
eiEt−i(k−iκ)r (17)

where the spatial damping 	k assumes the value

κ = m�

2k
(18)
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The appearance of complex momenta together with complex energies is a conse-
quence of the fact that they are subject to Lorentz transformations. The imaginary
parts, being differences of energy-momentum, transform as 4-vectors (Blum, 2000;
Blum and Saller, 2004). In a Lorentz system in which the imaginary part i	E of
the spacelike (i	E, i	k) vanishes, it is the complex momentum that describes
the decay.

2.2.3. Superposition Principle Applied

For the treatment of short lived particles it is appropriate to consider spherical
waves with their well defined production point. Let ψ1 be a stable spherical wave
with momentum k1 and ψ2 an unstable spherical wave with complex momentum
k2 + iκ , and let them interfere. We have a situation of continuous flow, and let
the energies of ψ1 and ψ2 be equal and real in the sharp energy system; then
k2

1 − k2
2 = m2

2 − m2
1. We should later describe more general situations. For the

probability density one obtains

P (r) = |ψ1 + ψ2|2 =
∣∣∣∣a1

eik1r

r
+ a2

ei[k2+iκ]r

r

∣∣∣∣
2

= |a1|2
r2

+ |a2|2
r2

e−2κr + 2Rea1a
∗
2
ei(k1−k2)r−κr

r2
(19)

Integration over the volume of a sphere with radius R � 1/κ, 1/(k1 − k2)
produces an expression for the number of particles present in this sphere around
the target. (In the second and third terms the integration may be extended to ∞.)

∫ R

0
P (r)4πr2dr = 4π |a1|2R + 4π

|a2|2
2κ

+ 2Re
4πa1a

∗
2

−i(k1 − k2) + κ

= 4π |a1|2R + 4π
|a2|2
2κ

+ 8π |a1||a2|Re

(
eiφ κ + i(k1 − k2)

(k1 − k2)2 + κ2

)
(20)

where φ is the phase difference between a1 and a2. The first term is the pure
component of the stable state, term 2 is the pure component of the unstable state,
and term 3 the component consisting of both states. The decay products are created
by the decay of terms 2 and 3, but the rate of decay of the interference term is
only half the value from term 2. We may form the ratio of the decay rates of both
components and call it the yield ratio Yl/q of the linear term 3 over the quadratic
term 2.

Yl/q = |a1|
|a2|2Re

(
eiφ κ2 + i(k1 − k2)κ

(k1 − k2)2 + κ2

)
(21)

It vanishes as it should when κ = 0, and it becomes large when the amplitude
ratio |a2|/|a1| becomes small.
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In the notation of Eq. (5) we identify the proton with |1〉, the N∗ with |2〉,
whereas |3〉 is any other channel that is not interfering. Instead of (6) we now have

〈f |f 〉=|S11−1|2〈1|1〉 + 2Re[(S11 − 1)S∗
12〈2|1〉] + |S12|2〈2|2〉 + |S13|2〈3|3〉 . . .

(22)

The presence of the term 〈2|1〉 means that a state is created that is undecided
between |1〉 and |2〉; it decays and liberates decay products. As 〈f |f 〉 is propor-
tional to the cross section of the partial wave, Eq. (22) establishes a new relation
between the production cross section of the decay products of |2〉 and the S-matrix
element S12. This relation contains a quadratic as well as a linear term of S12.

In a comparison between Eqs. (22) and (19), the notation of (22) is more
general: The term 〈2|1〉 is the degree of non-orthogonality between |1〉 and |2〉
whereas the interference term in Eqs. (19) to (21) is the degree of non-orthogonality
due to the decay and the difference of momenta alone. There could be other
factors such as internal quantum numbers to reduce the total non-orthogonality.
We compare Eqs. (21) and (22), equating (S11 − 1) = a1 and S12 = a2 and obtain

2Re

(
a1a

∗
2

|a2|2
〈2|1〉
〈2|2〉

)
= Yl/q = 2Re

(
a1a

∗
2

|a2|2
κ2 + i(k1 − k2)κ

κ2 + (k1 − k2)2
K

)
(23)

This relation holds for any a1, a2, therefore

〈2|1〉
〈2|2〉 = κ2 + i(k1 − k2)κ

κ2 + (k1 − k2)2
K (24)

where the complex number K (0 ≤ |K| ≤ 1) describes these other factors. It
could be called ‘the degree of internal similarity’ whereas the kinematic factor is
the ‘degree of external similarity.’ The numerical value of (24), in first order of
m2�/(m2

2 − m2
1), is

〈2|1〉
〈2|2〉 = i

m2�

m2
2 − m2

1

K

As a general orientation, we may imagine that for some quasi diffractive
scattering process (with typically m2�/(m2

2 − m2
1) ≈ 0.2) at high energies, |a2|

could be two orders of magnitude smaller than |a1|, resulting in an amplification
factor (23) of the cross section that would be two orders of magnitude, multiplied
by the value of Eq. (24). Therefore a full order of magnitude for the amplification
factor can reasonably be expected—albeit still depending on K .

2.3. Representation of Short Lived States in Hilbert Space

We have used the superposition principle on ‘similar’ or ‘approximately
identical’ states, defined (in a first step) as ‘identical in all respects except for a
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small difference in energy-momentum, comparable to �, the inverse life time of
one of them.’ This gave rise to a new relation between the S-matrix element for
the production of the unstable state and the cross section for its decay products.

In Hilbert space, this implied the existence of non-zero transition elements
between similar states, which are therefore no longer orthogonal to each other.

There is a theorem that Hermitian or self-adjoint Hilbert space operators have
real eigenvalues and that the eigenstates are orthogonal to each other. If short lived
states with complex energy-momentum are eigenstates of a Hamiltonian, it has
to be a non-Hermitian Hamiltonian, and the non-orthogonality of similar states
appears to be a natural consequence—which in turn justifies the extension of the
superposition principle to ‘similar’ states.

The next step is to work out the norms of these states in Hilbert space. It
turns out that a collective norm is appropriate for the states that interfere with each
other. This is shown in the contribution of Heinrich Saller to this workshop.

3. OPTICAL THEOREM FOR DIFFRACTION DISSOCIATION

3.1. Recapitulation of the Optical Theorem we Know
(Blatt and Weisskopf, 1965; Roman, 1965)

The amplitude f (θ ) for the scattering angle θ is connected with the differential
cross section by

dσ

d�
= |f (θ )|2 (25)

In the partial wave expansion in Legendre functions P (cos θ ) we have for the
elastic channel

f el(θ ) = 1

2ik

∞∑

l=0

(2l + 1)
(
C

(1)
l e2iδl − 1

)
Pl(cos θ ) (26)

and for every inelastic channel n (n = 2, . . . , N )

f inel(θ ) = 1

2ik

∞∑

l=0

(2l + 1)C(n)
l e2iφ

(n)
l Pl(cos θ ) (27)

Here the δl are the elastic phase shifts, the φ
(n)
l the production phases of the

inelastic channels. The real numbers C
(n)
l are between 0 and 1 and satisfy, for

every l, the relation

N∑

n=1

|C(n)
l |2 = 1, (28)

which represents probability conservation in every partial wave.
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For a calculation of the total cross section σtot it is easiest to distinguish the
various channels by kets |n〉 that are orthogonal to each other. We write Eqs. (26)
and (27) as

f (θ )|f 〉 = 1

2ik

∞∑

l=0

(2l + 1)Pl(cos θ )

[
(
C

(1)
l e2iδl − 1

)|1〉 +
N∑

n=2

C
(n)
l eiφ

(n)
l |n〉

]

(29)

For the complete σtot we have to form |f (θ )|2〈f |f 〉, integrate over all angles
and sum over n. On account of the orthonormality conditions

∫
d�Pl(cos θ )P ′

l (cos θ ) = 4π

2l + 1
δll′ (30)

〈n|n′〉 = δnn′ (31)

one obtains

σtot =
∫

d�|f (θ )|2〈f |f 〉

= π

k2

∑

l

(2l + 1)

(
∣∣C(1)

l e2iδl − 1
∣∣2 +

N∑

n=2

(
C

(n)
l

)2

)
(32)

= π

k2

∑

l

(2l + 1)
(
2 − 2Re

(
C

(1)
l e2iδl

))

On the other hand, the elastic scattering amplitude for θ = 0 is seen from (29) to
be

f (0)|1〉 = 1

2ik

∑

l

(2l + 1)
(
C

(1)
l e2iδl − 1

)∣∣1
〉

(33)

using Pl(1) = 1 for every l. The imaginary part of f (0) is

Imf (0) = −1

2k

∑

l

(2l + 1)Re
(
C

(1)
l e2iδl − 1

)
(34)

Comparing (34) and (32) we find the familiar optical theorem

σtot = 4π

k
Imf (0) (35)

3.2. An Optical Theorem for Diffraction Dissociation

Now we introduce one diffraction dissociation channel capable of interfer-
ence with the initial state; let 〈1|2〉 �= 0. We compare the forward amplitude for
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the production of |2〉 with the cross section integrated over the angles:

f (2)(0)|2〉 = 1

2ik

∑

l

(2l + 1)C(2)
l eiφ

(2)
l |2〉 (36)

The indistinguishable states |1〉 and |2〉 have a production rate proportional
to

|f (1)(θ )|2〈1|1〉 + |f (2)(θ )|2〈2|2〉 + f (1)(θ )f (2)∗(θ )〈2|1〉 (37)

of which the second and third terms produce the decay products. Their cross
section is

σ decay products =
∫

d�(|f (2)(θ )|2 + 2Re[f (1)(θ )f (2)∗(θ )〈2|1〉])

= π

k2

∑

l

(2l + 1)
((

C
(2)
l

)2〈2|2〉

+ 2Re
[(

C
(1)
l e2iδl − 1

)
C

(2)
l e−iφ

(2)
l 〈2|1〉]) (38)

At high energies where the C
(1)
l and C

(2)
l are both � 1, we have in first order

of the Cl

σ decay products = π

k2

∑

l

(2l + 1)2Re
(− C

(2)
l e−iφ

(2)
l 〈2|1〉) (39)

From (36) we see that in the forward direction

4π

k
Ref (2)(0) = 2π

k2
Im

∑

l

(2l + 1)C(2)
l eiφ

(2)
l (40)

4π

k
Imf (2)(0) = 2π

k2
(−)Re

∑

l

(2l + 1)C(2)
l eiφ

(2)
l (41)

σ decay products = 4π
k

(Imf (2)(0)Re〈1|2〉 + Ref (2)(0)Im〈1|2〉) (42)

This optical theorem for a diffraction dissociation channel holds in first order
of the amplitude. It can be expected that at high energy the amplitudes are small,
so that Eq. (42) describes the measured cross section to leading order.

4. CONCLUSIONS

The extension of the principle of superposition to states that are not identical
but similar with short life time in fact seems to be a suitable tool towards an
understanding of the appearance of large cross sections from small amplitudes.
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Before a theory of quasi diffractive processes can be constructed on such
grounds, there are a few obstacles to overcome. Spin must be included because
diffractive scattering is also observed when the excitation is to a different spin.3

A formulation for an S-matrix must be found that operates on states that are not
orthogonal on each other—work to be done.
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